Publications
Italic stands for corresponding author(s). For my complete publication profile, see Google Scholar.
2024
Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation
Matteo Attimonelli, Danilo Danese, Angela Di Fazio, Daniele Malitesta, Claudio Pomo, Tommaso Di Noia
arXiv preprint
[code]Dot Product is All You Need: Bridging the Gap Between Item Recommendation and Link Prediction
Daniele Malitesta, Alberto Carlo Maria Mancino, Pasquale Minervini, Tommaso Di Noia
arXiv preprintHow Fair is Your Diffusion Recommender Model?
Daniele Malitesta, Giacomo Medda, Erasmo Purificato, Ludovico Boratto, Fragkiskos D. Malliaros, Mirko Marras, Ernesto William De Luca
arXiv preprintA Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria Mancino, Tommaso Di Noia, Eugenio Di Sciascio
RecSys 2024
[code]Do We Really Need to Drop Items with Missing Modalities in Multimodal Recommendation?
Daniele Malitesta, Emanuele Rossi, Claudio Pomo, Tommaso Di Noia, Fragkiskos D. Malliaros
CIKM 2024
[code]Graph Neural Networks for Recommendation leveraging Multimodal Information (Dissertation Abstract)
Daniele Malitesta
SIGIR forumReport on the 1st International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024) at ECIR 2024
Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato
SIGIR forumUplift Modelling under Limited Supervision
George Panagopoulos, Daniele Malitesta, Fragkiskos D. Malliaros, Jun Pang
ECML-PKDD 2024Formalizing Multimedia Recommendation through Multimodal Deep Learning
Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Felice Antonio Merra, Tommaso Di Noia, Eugenio Di Sciascio
ACM Transactions on Recommender Systems
[code]Ducho 2.0: Towards a More Up-to-Date Unified Framework for the Extraction of Multimodal Features in Recommendation
Matteo Attimonelli, Danilo Danese, Daniele Malitesta, Claudio Pomo, Giuseppe Gassi, Tommaso Di Noia
The 2024 ACM Web Conference
[code]KGUF: Simple Knowledge-aware Graph-based Recommender with User-based Semantic Features Filtering
Salvatore Bufi, Alberto Carlo Maria Mancino, Antonio Ferrara, Daniele Malitesta, Tommaso Di Noia, Eugenio Di Sciascio
1st International Workshop on Graph-Based Approaches in Information Retrieval @ ECIR 2024
[code]First International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024)
Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato
ECIR 2024
2023
Graph Neural Networks for Recommendation: Reproducibility, Graph Topology, and Node Representation
Daniele Malitesta, Claudio Pomo, Tommaso Di Noia
LoG 2023
[website][code]A Topology-aware Analysis of Graph Collaborative Filtering
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria Mancino, Eugenio Di Sciascio, Tommaso Di Noia
arXiv preprint
[code][slides]On Popularity Bias of Multimodal-aware Recommender Systems: a Modalities-driven Analysis
Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia
Workshop on Deep Multimodal Learning for Information Retrieval @ MM 2023
[code]Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis
Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro Bellogin, Eugenio Di Sciascio, Tommaso Di Noia
RecSys 2023
[code][slides]An Out-of-the-Box Application for Reproducible Graph Collaborative Filtering extending the Elliot Framework
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia, Antonio Ferrara
3rd Workshop on Graph Learning Benchmarks @ KDD 2023
[code]Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Vincenzo Paparella, Claudio Pomo
ECIR 2023
[code]Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation
Daniele Malitesta, Giuseppe Gassi, Claudio Pomo, Tommaso Di Noia
MM 2023
[code]An Out-of-the-Box Application for Reproducible Graph Collaborative Filtering extending the Elliot Framework
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia, Antonio Ferrara
UMAP 2023
[code]Disentangling the Performance Puzzle of Multimodal-aware Recommender Systems
Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia
2nd Workshop on A Well-Rounded Evaluation of Recommender Systems @ KDD2023
[code]
2022
Reshaping Graph Recommendation with Edge Graph Collaborative Filtering and Customer Reviews
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Daniele Malitesta, Claudio Pomo
Workshop on Deep Learning for Search and Recommendation @ CIKM2022
[code]How Neighborhood Exploration influences Novelty and Diversity in Graph Collaborative Filtering
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Daniele Malitesta, Claudio Pomo
2nd Workshop on Multi-Objective Recommender Systems @ RecSys2022
[code]Leveraging Content-Style Item Representation for Visual Recommendation
Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
ECIR 2022
[code]
2021
V-Elliot: Design, Evaluate and Tune Visual Recommender Systems
Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Tommaso Di Noia
RecSys 2021
[code]Adversarial Attacks against Visual Recommendation: an Investigation on the Influence of Items’ Popularity
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Daniele Malitesta, Felice Antonio Merra
Workshop on Online Misinformation- and Harm-Aware Recommender Systems @ RecSys 2021
[code]How to perform reproducible experiments in the ELLIOT recommendation framework: data processing, model selection, and performance evaluation
Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Eugenio Di Sciascio, Tommaso Di Noia
IIR 2021
[code]A Study on the Relative Importance of Convolutional Neural Networks in Visually-Aware Recommender Systems
Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
Workshop on Computer Vision for Fashion, Art, and Design @ CVPR 2021
[code]A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
SIGIR 2021
[code]Elliot: a Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Tommaso Di Noia
SIGIR 2021
[code]
2020
Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual Recommenders
Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
Workshop on Dataset Curation and Security @ NeurIPS 2020
[code]An Empirical Study of DNNs Robustification Inefficacy in Protecting Visual Recommenders
Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
arXiv preprintTAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems
Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra
Workshop on Dependable and Secure Machine Learning @ IEEE/IFIP DSN 2020
[code]Deep Learning-Based Adaptive Image Compression System for a Real-World Scenario
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta
EAIS 2020